Resit Exam - Statistics (WBMA009-05) 2023/2024

Date and time: February 2, 2024, 15.00-17.00h

Place: Exam Hall 1, Blauwborgje 4

Rules to follow:

- This is a closed book exam. Consultation of books and notes is **not** permitted. You can use a simple (non-programmable) calculator.
- Write your name and student number onto each paper sheet.
 There are 3 exercises and you can reach 90 points.
 ALWAYS include the relevant equation(s) and/or short derivations.
- We wish you success with the completion of the exam!

START OF EXAM

- 1. Sample from the Poisson distribution. 50 Let X_1, \ldots, X_n be a sample from the Poisson distribution with parameter $\lambda > 0$.
 - (a) Determine a sufficient statistic for λ . $\boxed{5}$
 - (b) Compute the Maximum Likelihood (ML) estimator of λ . $\boxed{5}$ You don't need to check via the 2nd derivative whether it is really a maximum.
 - (c) Compute the Fisher information $I(\lambda)$ (for a sample of size n=1). 5
 - (d) Assume that the sample size is n = 100 and that the mean of the observations is $\bar{x}_{100} = 5$. Give an asymptotic two-sided 80% confidence interval for λ . 10
 - (e) Suppose that n=3. Show that the estimator $\hat{\lambda}_{\star} = \frac{X_1 + 2X_2 + 3X_3}{6}$ is unbiased and check whether $\hat{\lambda}_{\star}$ attains the Cramer-Rao bound. $\boxed{5}$ Use the result from (a) and the Rao-Blackwell theorem to derive an improved estimator $\hat{\lambda}_{\diamond}$ with $Var(\hat{\lambda}_{\diamond}) \leq Var(\hat{\lambda}_{\star})$. $\boxed{8}$ Does the new estimator $\hat{\lambda}_{\diamond}$ attain the Cramer-Rao bound? $\boxed{2}$
 - (f) Derive the uniform most powerful (UMP) test for $H_0: \lambda = 1$ vs. $H_1: \lambda = 3$ to the level $\alpha = 0.05$. In your derivation let the symbol $q_{\lambda,\alpha}$ denote the α quantile of a Poisson distribution with parameter λ . $\boxed{10}$

<u>HINT 1</u>: A Poisson distribution with parameter $\lambda > 0$ has density

$$p(x|\lambda) = e^{-\lambda} \cdot \frac{\lambda^x}{x!}$$
 $(x \in \mathbb{N}_0)$

The expectation is λ and the variance is λ .

HINT 2: $Y := X_1 + \ldots + X_n$ has a Poisson distribution with parameter $n\lambda$.

HINT 3: For the relevant quantiles see Exercise 3.

2. Maximum Likelihood (ML) estimator. 20

Let X be a random variable with sample space $S = \{0, 1, 2, 3\}$ and density

$$p(x|\theta) = \begin{cases} 2\theta/3 & \text{for } x = 0\\ \theta/3 & \text{for } x = 1\\ 2(1-\theta)/3 & \text{for } x = 2\\ (1-\theta)/3 & \text{for } x = 3 \end{cases}$$

where $\theta \in [0, 1]$ is an unknown parameter.

Suppose that a sample of size n = 10 has been taken from such a distribution and that the ten realisations are: $(x_1, \ldots, x_{10}) = (3, 0, 2, 1, 3, 2, 1, 0, 2, 1)$.

- (a) Derive and provide the maximum likelihood (ML) estimator of θ . If applicable, check via the 2nd derivative whether it is really a maximum. 10
- (b) Check whether the ML estimator is unbiased or asymptotically unbiased. 10

3. Neyman Pearson (UMP test). 20

Consider a random sample of size n = 9:

$$X_1,\ldots,X_9 \sim N(\mu,\sigma^2)$$

where $\sigma^2 = 1$ is known and μ is unknown.

(a) Derive the uniform most powerful test to the level $\alpha = 0.1$ for the problem

$$H_0: \mu = 0 \text{ vs. } H_1: \mu = 1$$

(b) Check if the power of the test is greater than 0.95.

<u>HINT 1:</u> Recall the density of the $N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{\sigma} \cdot \exp\left\{-\frac{1}{2} \cdot \frac{(x-\mu)^2}{\sigma^2}\right\} \qquad (x \in \mathbb{R})$$

HINT 2: The relevant quantiles are provided in Table 1 below.

α	0.025	0.05	0.1	0.5
q_{α}	-1.96	-1.64	-1.28	0

Table 1: Quantiles q_{α} of the $\mathcal{N}(0,1)$ distribution.

2